Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Emerg Infect Dis ; 29(3): 561-568, 2023 03.
Article in English | MEDLINE | ID: covidwho-2224718

ABSTRACT

In 2020, Montana, USA, reported a large increase in Colorado tick fever (CTF) cases. To investigate potential causes of the increase, we conducted a case-control study of Montana residents who tested positive or negative for CTF during 2020, assessed healthcare providers' CTF awareness and testing practices, and reviewed CTF testing methods. Case-patients reported more time recreating outdoors on weekends, and all reported finding a tick on themselves before illness. No consistent changes were identified in provider practices. Previously, only CTF serologic testing was used in Montana. In 2020, because of SARS-CoV-2 testing needs, the state laboratory sent specimens for CTF testing to the Centers for Disease Control and Prevention, where more sensitive molecular methods are used. This change in testing probably increased the number of CTF cases detected. Molecular testing is optimal for CTF diagnosis during acute illness. Tick bite prevention measures should continue to be advised for persons doing outdoor activities.


Subject(s)
COVID-19 , Colorado Tick Fever , Colorado tick fever virus , Humans , Montana , COVID-19 Testing , Case-Control Studies , Pandemics , SARS-CoV-2 , Colorado Tick Fever/epidemiology
2.
Clin Infect Dis ; 75(1): e122-e132, 2022 08 24.
Article in English | MEDLINE | ID: covidwho-1883003

ABSTRACT

BACKGROUND: In Spring 2021, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) B.1.1.7 (Alpha) became the predominant variant in the United States. Research suggests that Alpha has increased transmissibility compared with non-Alpha lineages. We estimated household secondary infection risk (SIR), assessed characteristics associated with transmission, and compared symptoms of persons with Alpha and non-Alpha infections. METHODS: We followed households with SARS-CoV-2 infection for 2 weeks in San Diego County and metropolitan Denver, January to April 2021. We collected epidemiologic information and biospecimens for serology, reverse transcription-polymerase chain reaction (RT-PCR), and whole-genome sequencing. We stratified SIR and symptoms by lineage and identified characteristics associated with transmission using generalized estimating equations. RESULTS: We investigated 127 households with 322 household contacts; 72 households (56.7%) had member(s) with secondary infections. SIRs were not significantly higher for Alpha (61.0% [95% confidence interval, 52.4-69.0%]) than non-Alpha (55.6% [44.7-65.9%], P = .49). In households with Alpha, persons who identified as Asian or Hispanic/Latino had significantly higher SIRs than those who identified as White (P = .01 and .03, respectively). Close contact (eg, kissing, hugging) with primary cases was associated with increased transmission for all lineages. Persons with Alpha infection were more likely to report constitutional symptoms than persons with non-Alpha (86.9% vs 76.8%, P = .05). CONCLUSIONS: Household SIRs were similar for Alpha and non-Alpha. Comparable SIRs may be due to saturation of transmission risk in households due to extensive close contact, or true lack of difference in transmission rates. Avoiding close contact within households may reduce SARS-CoV-2 transmission for all lineages among household members.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , Family Characteristics , Humans , SARS-CoV-2/genetics , United States/epidemiology
3.
J Pediatr ; 247: 29-37.e7, 2022 08.
Article in English | MEDLINE | ID: covidwho-1873172

ABSTRACT

OBJECTIVE: To assess the household secondary infection risk (SIR) of B.1.1.7 (Alpha) and non-Alpha lineages of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) among children. STUDY DESIGN: During January to April 2021, we prospectively followed households with a SARS-CoV-2 infection. We collected questionnaires, serial nasopharyngeal swabs for reverse transcription polymerase chain reaction testing and whole genome sequencing, and serial blood samples for serology testing. We calculated SIRs by primary case age (pediatric vs adult), household contact age, and viral lineage. We evaluated risk factors associated with transmission and described symptom profiles among children. RESULTS: Among 36 households with pediatric primary cases, 21 (58%) had secondary infections. Among 91 households with adult primary cases, 51 (56%) had secondary infections. SIRs among pediatric and adult primary cases were 45% and 54%, respectively (OR, 0.79; 95% CI, 0.41-1.54). SIRs among pediatric primary cases with Alpha and non-Alpha lineage were 55% and 46%, respectively (OR, 1.52; 95% CI, 0.51-4.53). SIRs among pediatric and adult household contacts were 55% and 49%, respectively (OR, 1.01; 95% CI, 0.68-1.50). Among pediatric contacts, no significant differences in the odds of acquiring infection by demographic or household characteristics were observed. CONCLUSIONS: Household transmission of SARS-CoV-2 from children and adult primary cases to household members was frequent. The risk of secondary infection was similar among child and adult household contacts. Among children, household transmission of SARS-CoV-2 and the risk of secondary infection was not influenced by lineage. Continued mitigation strategies (eg, masking, physical distancing, vaccination) are needed to protect at-risk groups regardless of virus lineage circulating in communities.


Subject(s)
COVID-19 , SARS-CoV-2 , Adult , COVID-19/epidemiology , California , Child , Colorado/epidemiology , Humans
4.
JAMA Intern Med ; 182(7): 701-709, 2022 07 01.
Article in English | MEDLINE | ID: covidwho-1825745

ABSTRACT

Importance: As self-collected home antigen tests become widely available, a better understanding of their performance during the course of SARS-CoV-2 infection is needed. Objective: To evaluate the diagnostic performance of home antigen tests compared with reverse transcription-polymerase chain reaction (RT-PCR) and viral culture by days from illness onset, as well as user acceptability. Design, Setting, and Participants: This prospective cohort study was conducted from January to May 2021 in San Diego County, California, and metropolitan Denver, Colorado. The convenience sample included adults and children with RT-PCR-confirmed infection who used self-collected home antigen tests for 15 days and underwent at least 1 nasopharyngeal swab for RT-PCR, viral culture, and sequencing. Exposures: SARS-CoV-2 infection. Main Outcomes and Measures: The primary outcome was the daily sensitivity of home antigen tests to detect RT-PCR-confirmed cases. Secondary outcomes included the daily percentage of antigen test, RT-PCR, and viral culture results that were positive, and antigen test sensitivity compared with same-day RT-PCR and cultures. Antigen test use errors and acceptability were assessed for a subset of participants. Results: This study enrolled 225 persons with RT-PCR-confirmed infection (median [range] age, 29 [1-83] years; 117 female participants [52%]; 10 [4%] Asian, 6 [3%] Black or African American, 50 [22%] Hispanic or Latino, 3 [1%] Native Hawaiian or Other Pacific Islander, 145 [64%] White, and 11 [5%] multiracial individuals) who completed 3044 antigen tests and 642 nasopharyngeal swabs. Antigen test sensitivity was 50% (95% CI, 45%-55%) during the infectious period, 64% (95% CI, 56%-70%) compared with same-day RT-PCR, and 84% (95% CI, 75%-90%) compared with same-day cultures. Antigen test sensitivity peaked 4 days after illness onset at 77% (95% CI, 69%-83%). Antigen test sensitivity improved with a second antigen test 1 to 2 days later, particularly early in the infection. Six days after illness onset, antigen test result positivity was 61% (95% CI, 53%-68%). Almost all (216 [96%]) surveyed individuals reported that they would be more likely to get tested for SARS-CoV-2 infection if home antigen tests were available over the counter. Conclusions and Relevance: The results of this cohort study of home antigen tests suggest that sensitivity for SARS-CoV-2 was moderate compared with RT-PCR and high compared with viral culture. The results also suggest that symptomatic individuals with an initial negative home antigen test result for SARS-CoV-2 infection should test again 1 to 2 days later because test sensitivity peaked several days after illness onset and improved with repeated testing.


Subject(s)
COVID-19 , Adult , COVID-19/diagnosis , Child , Cohort Studies , Female , Humans , Prospective Studies , Reverse Transcriptase Polymerase Chain Reaction , SARS-CoV-2/genetics , Sensitivity and Specificity
5.
Public Health Rep ; 137(2): 203-207, 2022.
Article in English | MEDLINE | ID: covidwho-1582747

ABSTRACT

In February 2020, during the early days of the COVID-19 pandemic, 232 evacuees from Wuhan, China, were placed under federal 14-day quarantine upon arrival at a US military base in San Diego, California. We describe the monitoring of evacuees and responders for symptoms of COVID-19, case and contact investigations, infection control procedures, and lessons learned to inform future quarantine protocols for evacuated people from a hot spot resulting from a novel pathogen. Thirteen (5.6%) evacuees had COVID-19-compatible symptoms and 2 (0.9%) had laboratory-confirmed SARS-CoV-2. Two case investigations identified 43 contacts; 3 (7.0%) contacts had symptoms but tested negative for SARS-CoV-2 infection. Daily symptom and temperature screening of evacuees and enacted infection control procedures resulted in rapid case identification and isolation and no detected secondary transmission among evacuees or responders. Lessons learned highlight the challenges associated with public health response to a novel pathogen and the evolution of mitigation strategies as knowledge of the pathogen evolves.


Subject(s)
COVID-19 , Quarantine , United States/epidemiology , Humans , COVID-19/epidemiology , Military Facilities , Pandemics/prevention & control , SARS-CoV-2 , China/epidemiology
6.
Open forum infectious diseases ; 8(Suppl 1):288-289, 2021.
Article in English | EuropePMC | ID: covidwho-1564846

ABSTRACT

Background In December 2020, B.1.1.7 lineage of SARS-CoV-2 was first detected in the United States and has since become the dominant lineage. Previous investigations involving B.1.1.7 suggested higher rates of transmission relative to non-B.1.1.7 lineages. We conducted a household transmission investigation to determine the secondary infection rates (SIR) of B.1.1.7 and non-B.1.1.7 SARS-CoV-2 lineages. Methods From January–April 2021, we enrolled members of households in San Diego County, CA, and Denver, CO metropolitan area (Tri-County), with a confirmed SARS-CoV-2 infection in a household member with illness onset date in the previous 10 days. CDC investigators visited households at enrollment and 14 days later at closeout to obtain demographic and clinical data and nasopharyngeal (NP) samples on all consenting household members. Interim visits, with collection of NP swabs, occurred if a participant became symptomatic during follow-up. NP samples were tested for SARS-CoV-2 using TaqPath™ RT-PCR test, where failure to amplify the spike protein results in S-Gene target failure (SGTF) may indicate B.1.1.7 lineage. Demographic characteristics and SIR were compared among SGTF and non-SGTF households using two-sided p-values with chi-square tests;95% confidence intervals (CI) were calculated with Wilson score intervals. Results 552 persons from 151 households were enrolled. 91 (60%) households were classified as SGTF, 57 (38%) non-SGTF, and 3 (2%) indeterminant. SGTF and non-SGTF households had similar sex distribution (49% female and 52% female, respectively;P=0.54) and age (median 30 years, interquartile range (IQR 14–47) and 31 years (IQR 15–45), respectively). Hispanic people accounted for 24% and 32% of enrolled members of SGTF and non-SGTF households, respectively (p=0.04). At least one secondary case occurred in 61% of SGTF and 58% of non-SGTF households (P=0.66). SIR was 52% (95%[CI] 46%-59%) for SGTF and 45% (95% CI 37%-53%) for non-SGTF households (P=0.18). Conclusion SIRs were high in both SGTF and non-SGTF households;our findings did not support an increase in SIR for SGTF relative to non-SGTF households in this setting. Sequence confirmed SARS-CoV-2 samples will provide further information on lineage specific SIRs. Disclosures All Authors: No reported disclosures

7.
PLoS One ; 16(9): e0256917, 2021.
Article in English | MEDLINE | ID: covidwho-1394548

ABSTRACT

BACKGROUND: Most current evidence on risk factors for hospitalization because of coronavirus disease 2019 (COVID-19) comes from studies using data abstracted primarily from electronic health records, limited to specific populations, or that fail to capture over-the-counter medications and adjust for potential confounding factors. Properly understanding risk factors for hospitalization will help improve clinical management and facilitate targeted prevention messaging and forecasting and prioritization of clinical and public health resource needs. OBJECTIVES: To identify risk factors for hospitalization using patient questionnaires and chart abstraction. METHODS: We randomly selected 600 of 1,738 laboratory-confirmed Colorado COVID-19 cases with known hospitalization status and illness onset during March 9-31, 2020. In April 2020, we collected demographics, social history, and medications taken in the 30 days before illness onset via telephone questionnaire and collected underlying medical conditions in patient questionnaires and medical record abstraction. RESULTS: Overall, 364 patients participated; 128 were hospitalized and 236 were non-hospitalized. In multivariable analysis, chronic hypoxemic respiratory failure with oxygen requirement (adjusted odds ratio [aOR] 14.64; 95% confidence interval [CI] 1.45-147.93), taking opioids (aOR 8.05; CI 1.16-55.77), metabolic syndrome (aOR 5.71; CI 1.18-27.54), obesity (aOR 3.35; CI 1.58-7.09), age ≥65 years (aOR 3.22; CI 1.20-7.97), hypertension (aOR 3.14; CI 1.47-6.71), arrhythmia (aOR 2.95; CI 1.00-8.68), and male sex (aOR 2.65; CI 1.44-4.88), were significantly associated with hospitalization. CONCLUSION: We identified patient characteristics, medications, and medical conditions, including some novel ones, associated with hospitalization. These data can be used to inform clinical and public health resource needs.


Subject(s)
COVID-19/therapy , Hospitalization/statistics & numerical data , SARS-CoV-2/isolation & purification , Surveys and Questionnaires , Adolescent , Adult , Aged , COVID-19/diagnosis , COVID-19/virology , Colorado , Humans , Male , Middle Aged , Multivariate Analysis , Risk Factors , SARS-CoV-2/physiology , Young Adult
8.
MMWR Morb Mortal Wkly Rep ; 70(6): 208-211, 2021 Feb 12.
Article in English | MEDLINE | ID: covidwho-1079854

ABSTRACT

Approximately 41% of adults aged 18-24 years in the United States are enrolled in a college or university (1). Wearing a face mask can reduce transmission of SARS-CoV-2, the virus that causes coronavirus disease 2019 (COVID-19) (2), and many colleges and universities mandate mask use in public locations and outdoors when within six feet of others. Studies based on self-report have described mask use ranging from 69.1% to 86.1% among adults aged 18-29 years (3); however, more objective measures are needed. Direct observation by trained observers is the accepted standard for monitoring behaviors such as hand hygiene (4). In this investigation, direct observation was used to estimate the proportion of persons wearing masks and the proportion of persons wearing masks correctly (i.e., covering the nose and mouth and secured under the chin*) on campus and at nearby off-campus locations at six rural and suburban universities with mask mandates in the southern and western United States. Trained student observers recorded mask use for up to 8 weeks from fixed sites on campus and nearby. Among 17,200 observed persons, 85.5% wore masks, with 89.7% of those persons wearing the mask correctly (overall correct mask use: 76.7%). Among persons observed indoors, 91.7% wore masks correctly. The proportion correctly wearing masks indoors varied by mask type, from 96.8% for N95-type masks and 92.2% for cloth masks to 78.9% for bandanas, scarves, and similar face coverings. Observed indoor mask use was high at these six universities with mask mandates. Colleges and universities can use direct observation findings to tailor training and messaging toward increasing correct mask use.


Subject(s)
Masks/statistics & numerical data , Masks/standards , Public Health/legislation & jurisprudence , Students/psychology , Universities/legislation & jurisprudence , Adolescent , COVID-19/epidemiology , COVID-19/prevention & control , Humans , Students/statistics & numerical data , United States/epidemiology , Young Adult
9.
Emerg Infect Dis ; 27(2): 385-395, 2021 Feb.
Article in English | MEDLINE | ID: covidwho-1076427

ABSTRACT

To improve recognition of coronavirus disease (COVID-19) and inform clinical and public health guidance, we randomly selected 600 COVID-19 case-patients in Colorado. A telephone questionnaire captured symptoms experienced, when symptoms occurred, and how long each lasted. Among 128 hospitalized patients, commonly reported symptoms included fever (84%), fatigue (83%), cough (73%), and dyspnea (72%). Among 236 nonhospitalized patients, commonly reported symptoms included fatigue (90%), fever (83%), cough (83%), and myalgia (74%). The most commonly reported initial symptoms were cough (21%-25%) and fever (20%-25%). In multivariable analysis, vomiting, dyspnea, altered mental status, dehydration, and wheezing were significantly associated with hospitalization, whereas rhinorrhea, headache, sore throat, and anosmia or ageusia were significantly associated with nonhospitalization. General symptoms and upper respiratory symptoms occurred earlier in disease, and anosmia, ageusia, lower respiratory symptoms, and gastrointestinal symptoms occurred later. Symptoms should be considered alongside other epidemiologic factors in clinical and public health decisions regarding potential COVID-19 cases.


Subject(s)
COVID-19/complications , COVID-19/epidemiology , Inpatients/statistics & numerical data , Outpatients/statistics & numerical data , SARS-CoV-2 , Adolescent , Adult , Aged , Aged, 80 and over , COVID-19/virology , Child , Child, Preschool , Colorado/epidemiology , Cough/epidemiology , Cough/virology , Disease Progression , Dyspnea/epidemiology , Dyspnea/virology , Fatigue/epidemiology , Fatigue/virology , Female , Fever/epidemiology , Fever/virology , Humans , Infant , Male , Middle Aged , Myalgia/epidemiology , Myalgia/virology , Symptom Assessment , Young Adult
10.
MMWR Morb Mortal Wkly Rep ; 69(26): 847-849, 2020 Jul 03.
Article in English | MEDLINE | ID: covidwho-635894

ABSTRACT

On March 26, 2020, Colorado instituted stay-at-home orders to reduce community transmission of SARS-CoV-2, the virus that causes coronavirus disease 2019 (COVID-19). To inform public health messaging and measures that could be used after reopening, persons with laboratory-confirmed COVID-19 during March 9-26 from nine Colorado counties comprising approximately 80% of the state's population† (Adams, Arapahoe, Boulder, Denver, Douglas, El Paso, Jefferson, Larimer, and Weld) were asked about possible exposures to SARS-CoV-2 before implementation of stay-at-home orders. Among 1,738 persons meeting the inclusion criteria§ in the Colorado Electronic Disease Surveillance System, 600 were randomly selected and interviewed using a standardized questionnaire by telephone. Data collection during April 10-30 included information about demographic characteristics, occupations, and selected activities in the 2 weeks preceding symptom onset. During the period examined, SARS-CoV-2 molecular testing was widely available in Colorado; community transmission was documented before implementation of the stay-at-home order. At least three attempts were made to contact all selected patients or their proxy (for deceased patients, minors, and persons unable to be interviewed [e.g., those with dementia]) on at least 2 separate days, at different times of day. Data were entered into a Research Electronic Data Capture (version 9.5.13; Vanderbilt University) database, and descriptive analyses used R statistical software (version 3.6.3; The R Foundation).


Subject(s)
Coronavirus Infections/diagnosis , Coronavirus Infections/prevention & control , Environmental Exposure/statistics & numerical data , Pandemics/prevention & control , Pneumonia, Viral/diagnosis , Pneumonia, Viral/prevention & control , Public Health/legislation & jurisprudence , Adult , COVID-19 , Colorado/epidemiology , Coronavirus Infections/epidemiology , Female , Humans , Laboratories , Male , Middle Aged , Pneumonia, Viral/epidemiology , Social Isolation
SELECTION OF CITATIONS
SEARCH DETAIL